Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; : 234-239, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301141

RESUMO

The present work offers a comprehensive description of the acid-induced gelation of carboxymethylcellulose (CMC), a water-soluble derivative of cellulose broadly used in numerous applications ranging from food packaging to biomedical engineering. Linear viscoelastic properties measured at various pH and CMC contents allow us to build a sol-gel phase diagram and show that CMC gels exhibit broad power-law viscoelastic spectra that can be rescaled onto a master curve following a time-composition superposition principle. These results demonstrate the microstructural self-similarity of CMC gels and inspire a mean-field model based on hydrophobic interchain association that accounts for the sol-gel boundary over the entire range of CMC content under study. Neutron scattering experiments further confirm this picture and suggest that CMC gels comprise a fibrous network cross-linked by aggregates. Finally, low-field NMR measurements offer an original signature of acid-induced gelation from a solvent perspective. Altogether, these results open avenues for the precise manipulation and control of CMC-based hydrogels.

2.
Chem Sci ; 8(2): 974-987, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451235

RESUMO

The self-assembly of small organic molecules is an intriguing phenomenon, which provides nanoscale structures for applications in numerous fields from medicine to molecular electronics. Detailed knowledge of their structure, in particular on the supramolecular level, is a prerequisite for the rational design of improved self-assembled systems. In this work, we prove the feasibility of a novel concept of NMR-based 3D structure determination of such assemblies in the solid state. The key point of this concept is the deliberate use of samples that contain 13C at its natural isotopic abundance (NA, 1.1%), while exploiting magic-angle spinning dynamic nuclear polarization (MAS-DNP) to compensate for the reduced sensitivity. Since dipolar truncation effects are suppressed to a large extent in NA samples, unique and highly informative spectra can be recorded which are impossible to obtain on an isotopically labeled system. On the self-assembled cyclic diphenylalanine peptide, we demonstrate the detection of long-range internuclear distances up to ∼7 Å, allowing us to observe π-stacking through 13C-13C correlation spectra, providing a powerful tool for the analysis of one of the most important non-covalent interactions. Furthermore, experimental polarization transfer curves are in remarkable agreement with numerical simulations based on the crystallographic structure, and can be fully rationalized as the superposition of intra- and intermolecular contributions. This new approach to NMR crystallography provides access to rich and precise structural information, opening up a new avenue to de novo crystal structure determination by NMR.

3.
Chemistry ; 21(12): 4512-7, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25663569

RESUMO

Magic-angle spinning dynamic nuclear polarization (MAS-DNP) has been proven to be a powerful technique to enhance the sensitivity of solid-state NMR (SSNMR) in a wide range of systems. Here, we show that DNP can be used to polarize lipids using a lipid-anchored polarizing agent. More specifically, we introduce a C16-functionalized biradical, which allows localization of the polarizing agents in the lipid bilayer and DNP experiments to be performed in the absence of excess cryo-protectant molecules (glycerol, dimethyl sulfoxide, etc.). This constitutes another original example of the matrix-free DNP approach that we recently introduced.


Assuntos
Radicais Livres/química , Lipossomos/química , Óxidos N-Cíclicos/química , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Propanóis/química
4.
J Magn Reson ; 239: 91-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24480716

RESUMO

Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...